Sponsored Links
-->

Friday, July 27, 2018

Dihydrotestosterone Androstanolone Stanolone Endogenous Androgen ...
src: thumb1.shutterstock.com

Dihydrotestosterone (DHT), or 5?-dihydrotestosterone (5?-DHT), also known as androstanolone or stanolone, is an endogenous androgen sex steroid and hormone. The enzyme 5?-reductase catalyzes the formation of DHT from testosterone in certain tissues including the prostate gland, seminal vesicles, epididymides, skin, hair follicles, liver, and brain. This enzyme mediates reduction of the C4-5 double bond of testosterone. Relative to testosterone, DHT is considerably more potent as an agonist of the androgen receptor (AR).

In addition to its role as a natural hormone, DHT has been used as a medication, for instance in the treatment of low testosterone levels in men; for information on DHT as a medication, see the androstanolone article.


Video Dihydrotestosterone



Biological function

DHT is biologically important for sexual differentiation of the male genitalia during embryogenesis, maturation of the penis and scrotum at puberty, growth of facial, body, and pubic hair, and development and maintenance of the prostate gland and seminal vesicles. It is produced from the less potent testosterone by the enzyme 5?-reductase in select tissues, and is the primary androgen in the genitals, prostate gland, seminal vesicles, skin, and hair follicles.

DHT signals mainly in an intracrine and paracrine manner in the tissues in which it is produced, playing only a minor role, if any, as a circulating endocrine hormone. Circulating levels of DHT are 1/10th and 1/20th those of testosterone in terms of total and free concentrations, respectively, whereas local DHT levels may be up to 10 times those of testosterone in tissues with high 5?-reductase expression such as the prostate gland. In addition, unlike testosterone, DHT is inactivated by 3?-hydroxysteroid dehydrogenase (3?-HSD) into the very weak androgen 3?-androstanediol in various tissues such as muscle, adipose, and liver among others, and in relation to this, DHT has been reported to be a very poor anabolic agent when administered exogenously as a medication.

In addition to normal biological functions, DHT also plays an important causative role in a number of androgen-dependent conditions including hair conditions like hirsutism (excessive facial/body hair growth) and pattern hair loss (androgenic alopecia or pattern baldness) and prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. 5?-Reductase inhibitors, which prevent DHT synthesis, are effective in the prevention and treatment of these conditions.

Metabolites of DHT have been found to act as neurosteroids with their own AR-independent biological activity. 3?-Androstanediol is a potent positive allosteric modulator of the GABAA receptor, while 3?-androstanediol is a potent and selective agonist of the estrogen receptor (ER) subtype ER?. These metabolites may play important roles in the central effects of DHT and by extension testosterone, including their antidepressant, anxiolytic, rewarding/hedonic, anti-stress, and pro-cognitive effects.

5?-Reductase deficiency

Much of the biological role of DHT has been elucidated in studies of individuals with congenital 5?-reductase type II deficiency, an intersex condition caused by a loss-of-function mutation in the gene encoding 5?-reductase type II, the major enzyme responsible for the production of DHT in the body. It is characterized by a defective and non-functional 5?-reductase type II enzyme and a partial but majority loss of DHT production in the body. In the condition, circulating testosterone levels are within or slightly above the normal male range, but DHT levels are low (around 30% of normal), and the ratio of circulating testosterone to DHT is greatly elevated (at about 3.5 to 5 times higher than normal).

Genetic males (46,XY) with 5?-reductase type II deficiency are born with undervirilization including pseudohermaphroditism (ambiguous genitalia), pseudovaginal perineoscrotal hypospadias, and usually undescended testes. Their external genitalia are female-like, with micropenis (a small, clitoris-like phallus), a partially unfused, labia-like scrotum, and a blind-ending, shallow vaginal pouch. Due to their lack of conspicuous male genitalia, genetic males with the condition are typically raised as girls. At the time of puberty however, they develop striking phenotypically masculine secondary sexual characteristics including partial virilization of the genitals (enlargement of the phallus into a near-functional penis and descent of the testes), voice deepening, typical male musculoskeletal development, and no menstruation, breast development, or other signs of feminization that occur during female puberty. In addition, normal libido and spontaneous erections develop, they usually show a sexual preference for females, and almost all develop a male gender identity.

Nonetheless, males with 5?-reductase type II deficiency exhibit signs of continued undervirilization in a number of domains. Facial hair was absent or sparse in a relatively large group of Dominican males with the condition. However, more facial hair has been observed in patients with the disorder from other parts of the world, although facial hair was still reduced relative to that of other men in the same communities. The divergent findings may reflect racial differences in androgen-dependent hair growth. A female pattern of androgenic hair growth, with terminal hair largely restricted to the axillae and lower pubic triangle, is observed in males with the condition. No temporal recession of the hairline or androgenic alopecia (pattern hair loss or baldness) has been observed in any of the cases of 5?-reductase type II deficiency that have been reported, whereas this is normally seen to some degree in almost all Caucasian males. Individuals with 5?-reductase type II deficiency were initially reported to have no incidence of acne, but subsequent research indicated normal sebum secretion and acne incidence.

In genetic males with 5?-reductase type II deficiency, the prostate gland is rudimentary or absent, and if present, remains small, underdeveloped, and unpalpable throughout life. In addition, neither BPH nor prostate cancer have been reported in these individuals. Genetic males with the condition generally show oligozoospermia due to undescended testes, but spermatogenesis is reported to be normal in those with testes that have descended, and there are case instances of men with the condition successfully fathering children.

Unlike males, genetic females with 5?-reductase type II deficiency are phenotypically normal. However, similarly to genetic males with the condition, they show reduced body hair growth, including an absence of hair on the arms and legs, slightly decreased axillary hair, and moderately decreased pubic hair. On the other hand, sebum production is normal. This is in accordance with the fact that sebum secretion appears to be entirely under the control of 5?-reductase type I.

5?-Reductase inhibitors

5?-Reductase inhibitors like finasteride and dutasteride inhibit 5?-reductase type II and/or other isoforms and are able to decrease circulating DHT levels by 65 to 98% depending on the 5?-reductase inhibitor in question. As such, similarly to the case of 5?-reductase type II deficiency, they provide useful insights in the elucidation of the biological functions of DHT. 5?-Reductase inhibitors were developed and are used primarily for the treatment of BPH. The drugs are able to significantly reduce the size of the prostate gland and to alleviate symptoms of the condition. Long-term treatment with 5?-reductase inhibitors is also able to significantly reduce the overall risk of prostate cancer, although a simultaneous small increase in the risk of certain high-grade tumors has been observed. In addition to prostate diseases, 5?-reductase inhibitors have subsequently been developed and introduced for the treatment of pattern hair loss in men. They are able to prevent further progression of hair loss in most men with the condition and to produce some recovery of hair in about two-thirds of men. 5?-Reductase inhibitors seem to be less effective for pattern hair loss in women on the other hand, although they do still show some effectiveness. Aside from pattern hair loss, the drugs are also useful in the treatment of hirsutism and can greatly reduce facial and body hair growth in women with the condition.

5?-Reductase inhibitors are overall well-tolerated and show a low incidence of adverse effects. Sexual dysfunction, including erectile dysfunction, loss of libido, and reduced ejaculate volume, may occur in 3.4 to 15.8% of men treated with finasteride or dutasteride. A small increase in the risk of affective symptoms including depression, anxiety, and self-harm may be seen. Both the sexual dysfunction and affective symptoms may be due partially or fully to prevention of the synthesis of neurosteroids like allopregnanolone rather necessarily than due to inhibition of DHT production. A very small risk of gynecomastia has been associated with 5?-reductase inhibitors (1.2 to 3.5%). Based on reports of 5?-reductase type II deficiency in males and the effectiveness of 5?-reductase inhibitors for hirsutism in women, reduced body and/or facial hair growth is a likely potential side effect of these drugs in men. There are very few studies evaluating the side effects of 5?-reductase inhibitors in women. However, due to the known role of DHT in male sexual differentiation, 5?-reductase inhibitors may cause birth defects such as ambiguous genitalia in the male fetuses of pregnant women. As such, they are not used in women during pregnancy.

MK-386 is a selective 5?-reductase type I inhibitor which was never marketed. Whereas 5?-reductase type II inhibitors achieve much higher reductions in circulating DHT production, MK-386 decreases circulating DHT levels by 20 to 30%. Conversely, it was found to decrease sebum DHT levels by 55% in men versus a modest reduction of only 15% for finasteride. However, MK-386 failed to show significant effectiveness in a subsequent clinical study for the treatment of acne.


Maps Dihydrotestosterone



Biological activity

DHT is a potent agonist of the AR, and is in fact the most potent known endogenous ligand of the receptor. It has an affinity (Kd) of 0.25 to 0.5 nM for the human AR, which is about 2- to 3-fold higher than that of testosterone (Kd = 0.4 to 1.0 nM) and 15-30 times higher than that of adrenal androgens. In addition, the dissociation rate of DHT from the AR is 5-fold slower than that of testosterone. The EC50 of DHT for activation of the AR is 0.13 nM, which is about 5-fold stronger than that of testosterone (EC50 = 0.66 nM). In bioassays, DHT has been found to be 2.5- to 10-fold more potent than testosterone.

The terminal half-life of DHT in the body (53 minutes) is longer than that of testosterone (34 minutes), and this may account for some of the difference in their potency. A study of transdermal DHT and testosterone treatment reported terminal half-lives of 2.83 hours and 1.29 hours, respectively.

Unlike other androgens such as testosterone, DHT cannot be converted by the enzyme aromatase into an estrogen like estradiol. Therefore, it is frequently used in research settings to distinguish between the effects of testosterone caused by binding to the AR and those caused by testosterone's conversion to estradiol and subsequent binding to and activation of ERs. Although DHT cannot be aromatized, it is still transformed into metabolites with significant ER affinity and activity. These are 3?-androstanediol and 3?-androstanediol, which are predominant agonists of the ER?.


Dihydrotestosterone Androstanolone Stanolone Endogenous Androgen ...
src: thumb9.shutterstock.com


Biochemistry

Biosynthesis

DHT is synthesized irreversibly from testosterone by the enzyme 5?-reductase. This occurs in various tissues including the genitals (penis, scrotum, clitoris, labia majora), prostate gland, skin, hair follicles, liver, and brain. Around 5 to 7% of testosterone undergoes 5?-reduction into DHT, and approximately 200 to 300 ?g of DHT is synthesized in the body per day. Most DHT is produced in peripheral tissues like the skin and liver, whereas most circulating DHT originates specifically from the liver. The testes and prostate gland contribute relatively little to concentrations of DHT in circulation.

There are two major isoforms of 5?-reductase, SRD5A1 (type I) and SRD5A2 (type II), with the latter being the most biologically important isoenzyme. There is also third 5?-reductase: SRD5A3. SRD5A2 is most highly expressed in the genitals, prostate gland, epididymides, seminal vesicles, genital skin, facial and chest hair follicles, and liver, while lower expression is observed in certain brain areas, non-genital skin/hair follicles, testes, and kidneys. SRD5A1 is most highly expressed in non-genital skin/hair follicles, the liver, and certain brain areas, while lower levels are present in the prostate, epididymides, seminal vesicles, genital skin, testes, adrenal glands, and kidneys. In the skin, 5?-reductase is expressed in sebaceous glands, sweat glands, epidermal cells, and hair follicles. Both isoenzymes are expressed in scalp hair follicles, although SRD5A2 predominates in these cells. The SRD5A2 subtype is the almost exclusive isoform expressed in the prostate gland.

Distribution

The plasma protein binding of DHT is more than 99%. In men, approximately 0.88% of DHT is unbound and hence free, while in premenopausal women, about 0.47-0.48% is unbound. In men, DHT is bound 49.7% to sex hormone-binding globulin (SHBG), 39.2% to albumin, and 0.22% to corticosteroid-binding globulin (CBG), while in premenopausal women, DHT is bound 78.1-78.4% to SHBG, 21.0-21.3% to albumin, and 0.12% to CBG. In late pregnancy, only 0.07% of DHT is unbound in women; 97.8% is bound to SHBG while 2.15% is bound to albumin and 0.04% is bound to CBG. DHT has higher affinity for SHBG than does testosterone, estradiol, or any other steroid hormone.

Metabolism

DHT is inactivated in the liver and extrahepatic tissues like the skin into 3?-androstanediol and 3?-androstanediol by the enzymes 3?-hydroxysteroid dehydrogenase and 3?-hydroxysteroid dehydrogenase, respectively. These metabolites are in turn converted, respectively, into androsterone and epiandrosterone, then conjugated (via glucuronidation and/or sulfation), released into circulation, and excreted in urine.

Unlike testosterone, DHT cannot be aromatized into an estrogen like estradiol, and for this reason, has no propensity for estrogenic effects.

Excretion

DHT is excreted in the urine as metabolites, such as conjugates of 3?-androstanediol and androsterone.

Levels

Serum DHT levels are about 10% of those of testosterone, but levels in the prostate gland are 5- to 10-fold higher than those of testosterone due to a more than 90% conversion of testosterone into DHT by locally expressed 5?-reductase. For this reason, and in addition to the fact that DHT is much more potent as an AR agonist than is testosterone, DHT is considered to be the major androgen of the prostate gland.


Dht Dihydrotestosterone Hair Loss - YouTube
src: i.ytimg.com


Medical use

DHT is available in pharmaceutical formulations for medical use as an androgen or anabolic-androgenic steroid (AAS). It is used mainly in the treatment of male hypogonadism. When used as a medication, dihydrotestosterone is referred to as androstanolone (INN) or as stanolone (BAN), and is sold under brand names such as Andractim among others. The availability of pharmaceutical DHT is limited; it is not available in the United States or Canada, but is available in certain European countries. The available formulations of DHT include buccal or sublingual tablets, topical gels, and, as esters in oil, injectables like androstanolone propionate and androstanolone valerate.


Dihydrotestosterone Molecular Structure Isolated On White Stock ...
src: thumbs.dreamstime.com


Chemistry

DHT, also known as 5?-androstan-17?-ol-3-one, is a naturally occurring androstane steroid with a ketone group at the C3 position and a hydroxyl group at the C17? position. It is the derivative of testosterone in which the double bond between the C4 and C5 positions has been reduced or hydrogenated.

Esters

Several C17? ester prodrugs of DHT, including androstanolone benzoate, androstanolone enanthate, androstanolone propionate, and androstanolone valerate, have been developed and introduced for medical use as AAS. Conversely, dihydrotestosterone acetate, dihydrotestosterone butyrate, and dihydrotestosterone formate have been developed but have not been marketed.

Derivatives

Synthetic derivatives of DHT that have been developed as AAS include:


Dihydrotestosterone molecular structure isolated on white รข€
src: st3.depositphotos.com


History

DHT was first synthesized by Adolf Butenandt and his colleagues in 1935. It was prepared via hydrogenation of testosterone, which had been discovered earlier that year. DHT was introduced for medical use as an AAS in 1953, and was noted to be more potent than testosterone but with reduced androgenicity. It was not elucidated to be an endogenous substance until 1956, when it was shown to be formed from testosterone in rat liver homogenates. In addition, the biological importance of DHT was not realized until the early 1960s, when it was found to be produced by 5?-reductase from circulating testosterone in target tissues like the prostate gland and seminal vesicles and was found to be more potent than testosterone in bioassays. The biological functions of DHT in humans became much more clearly defined upon the discovery and characterization of 5?-reductase type II deficiency in 1974. DHT was the last major sex hormone, the others being testosterone, estradiol, and progesterone, to be discovered, and is unique in that it is the only major sex hormone that functions principally as an intracrine and paracrine hormone rather than as an endocrine hormone.


Dihydrotestosterone Image & Photo (Free Trial) | Bigstock
src: static3.bigstockphoto.com


References

Source of article : Wikipedia